Studies on 5-8 Fused Ring Compounds. VII. The Conformations of the Eight-Membered Rings in $C_6-C_8-C_5$ Fused Ring Compounds

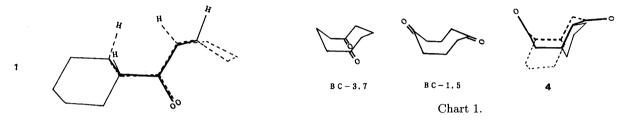
Misao Umehara,* Hiromi Honnami, Shinzaburo Hishida,† Takashi Kawata,††
Shigeru Ohba,†† and Shonosuke Zen†††
Department of Chemistry, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223
† Naka Works, Hitachi Ltd., Ichige, Katsuta, Ibaraki 312
†† Department of Chemistry, Faculty of Science and Technology, Keio University,
Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223
††† School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108
(Received April 19, 1993)

The five cis/trans isomers of C_6 – C_8 – C_5 fused ring compound, tricyclo[9.4.0.0^{4,8}] pentadecane-2,9-dione were synthesized by photocycloaddition of decalin-1,3-dione to cyclopentene. The conformational analyses were carried out by MM2 and the results were compared with X-ray analyses. The eight-membered rings take predominantly boat-chair forms although those in C_5 – C_8 – C_5 fused ring compounds exist in various conformations.

The cyclooctane ring is so flexible that there are many possible conformations. Cyclooctane, 1) its simple derivatives,²⁾ and 1,5-cyclooctanedione,^{3,4)} were found to be predominantly in boat-chair (BC) form, which is the most stable conformation predicted by the molecular mechanics calculations.⁵⁾ In monobromo derivatives of C₅-C₈ fused ring compounds the eightmembered rings also take BC forms.⁶⁾ In the preceding papers^{7,8)} we reported the syntheses of C₅-C₈-C₅ fused ring compounds, tricyclo[9.3.0.0^{4,8}]tetradecane-2, 9-dione, by photocycloaddition. The molecular structures of several geometrical isomers were determined by X-ray crystallography, 8,9) and the steric energies were calculated⁸⁾ by molecular mechanics (MM2 force filed).¹⁰⁾ The eight-membered rings of C₅-C₈-C₅ fused ring compounds were found in various conformations, boat-chair (BC), twist-boat-chair (TBC), chair-chair (CC), twist-boat (S_4) , and chair (C) forms. In this study C₆-C₈-C₅ fused ring compounds were synthesized and the conformations of the eight-membered rings were compared with those of the corresponding C₅-C₈-C₅ fused ring compounds. Conformations of eight-membered ring in other fused ring systems have been investigated for taxane bridgehead olefin system, 11) and for a compound having rigid norbornenyl rings.12)

The photocycloaddition of cis- and trans-decalin-1, 3-dione to cyclopentene in methanol yielded directly $C_6-C_8-C_5$ fused ring compounds, cis-cisoid-cis-, transtransoid-cis-, and trans-cisoid-cis-tricyclo[9.4.0.0^{4,8}]-pentadecane-2,9-dione (1, 2, and 3). The compounds 2 and 3 were isomerized to trans configuration under basic conditions, and yielded 4 and 5, respectively (Fig. 1). The molecular structures of 1, 2, and 3 were determined by X-ray crystallography. Because of the difficulty of preparing single crystals of 4 and 5, their X-ray studies are incomplete. Figure 2 shows the side views of the molecules, 1, 2, and 3. Their eight-membered rings take familiar BC forms, as in 1,5-cyclooc-

Fig. 1.


tanedione.4)

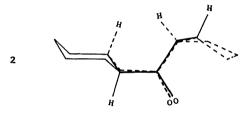

Steric energies of these compounds were calculated by MM2 assuming several forms of the eight-membered ring (BC, TBC, CC, S₄, C, twist-chair-chair (TCC), and twist-chair (TC)), and the conformations of lowest energy¹⁴⁾ were compared with the observed structures in crystals. These results were also compared with those of the C_5 – C_8 – C_5 fused ring compounds.⁸⁾ The strain energies for typical conformations of 1,5-cyclooctane-dione and C_6 – C_8 – C_5 fused ring compounds were listed in Table 1. The observed conformations (BC form) of

Table 1. Total Energies of 1, 2, 3, 4, and 5 by MM2 (kcal mol⁻¹)^{a)}

	Compounds	1,5-Cyclooctanedione ^{b)}	1	2	3	4	5
Conformat	tions						
$\mathrm{BC}^{\mathrm{d})}$		13.17	$32.75^{c)}$	32.22 ^{c)}	30.33 ^{c)}	30.39 ^{e)}	29.95
TBC		14.04	36.50	30.60	31.56	f)	31.52
TCC		14.43	35.04	32.95		30.81	_
CC		14.61	_		39.73	_	_
S_4		15.73	33.12	31.69		33.46	_
TC		17.98				_	_
\mathbf{C}		18.5				_	31.78

a) $1 \text{ kcal mol}^{-1} = 4.184 \text{ kJ mol}^{-1}$. b) Ref. 8. c) Observed conformation in crystals. d) BC-3,7 forms except 4. e) BC-1,5 form. f) — No energy minimum around the starting conformation.

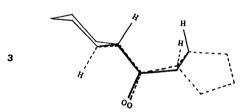


Fig. 2. The side views of the molecules 1, 2, and 3 by X-ray analyses. Projections along the $C(2)\cdots C(9)$ vectors.

1 and 3 are consistent with the lowest energy, however for 2 the conformation (TBC form) predicted by MM2 disagrees with that (BC form) obtained by X-ray analysis. Although the crystal structures of 4 and 5 were not determined by X-ray analysis, the MM2 calculations predict that the eight-membered rings take BC form in 4 and 5 (Chart 1). These BC-conformations are BC-3, 7 forms except for 4 which is BC-1,5 form. Molecular model indicates that 4 cannot exist in BC-3,7 form on account of the extreme torsional strain. The observed (X-ray) and calculated lowest energy (MM2) conformations of eight-membered rings in $C_6-C_8-C_5$ fused ring compounds were summarized in Table 2 with their ring fusions. The conformations in $C_5-C_8-C_5$ fused ring

compounds $(6, 7, 8, 9, \text{ and } 10)^{8)}$ with the same ring fusion as 1, 2, 3, 4, and 5, were also shown in Table 2. Though the eight-membered rings in C₅-C₈-C₅ fused ring compounds exist in various conformations: BC, S₄, TBC, CC, and C forms, the eight-membered rings in C₆-C₈-C₅ fused ring compounds take predominantly BC forms. The TBC form which was calculated to be the lowest energy conformation for 2 is the second lowest energy conformation for 1,5-cyclooctanedione (Table 1). In C₅-C₈-C₅ fused ring compounds various conformations of the eight-membered ring were observed, because the flexibility of the eight-membered rings is reduced by the five-membered rings attached at two sites. When one of the two five-membered rings of the C5-C8-C5 fused rings is replaced with a sixmembered ring, steric strain of the eight-membered ring reduces appreciably, and BC forms become preferred conformation similarly to cyclooctane¹⁾ and 1,5-cyclooctanedione.^{3,4)} The torsion angles at the ring junction in five membered rings of C₆-C₈-C₅ compounds are smaller than those in the six-membered rings. The observed C-C(1)-C(11)-C torsion angles in the six-membered ring of 1, 2, and 3 are in the range from 52.1 to 53.7°. Whereas, the C-C(4)-C(8)-C angles in the fivemembered ring are 40.1 to 43.2°.

In the BC forms the observed (X-ray) and calculated (MM2) torsion angles for eight-membered rings are compared in Table 3, where the deviation parameter ΔBC^{4} is a measure of fit to the symmetrical BC conformation. The ΔBC values for 1, 2, 3, 4, and 5 (9.9, 4.2, and 9.3 (X-ray), and 2.1, 1.5, 1.7, 2.3, and 4.4 (MM2)) are fairly smaller than that for 8 (19.9 (X-ray) and 7.8 (MM2)). These results indicate that the eight-membered rings in C_6 – C_8 – C_5 fused ring compounds are symmetric and less strained than those in the C_5 – C_8 –

Table 2. Ring-Fusions and Conformations of Eight-Membered Rings

		C_6 – C	$_8$ – C_5		$C_5 - C_8 - C_5$		
Ring-fusions	Compd	X-Ray	MM2	Compd	X-Ray	MM2	
cis-cisoid-cis	1	BC	BC	6 ^{a)}	S_4	S_4	
$trans-transoid\hbox{-} cis$	2	BC	TBC	$7^{\mathrm{a})}$	TBC	TBC	
$trans\hbox{-} cisoid\hbox{-} cis$	3	BC	BC	$8^{\mathrm{a})}$	BC	BC	
trans-transoid-trans	4		$\mathrm{BC}^{\mathrm{b})}$	$9^{\mathbf{a})}$		CC	
$trans\hbox{-}cisoid\hbox{-}trans$	5		BC	$10^{\mathrm{a})}$	C	TBC	

a) Ref. 8. b) BC-1,5 form. The others are BC-3,7 forms.

Table 3. Torsion Angles ω_{1-8} (Observed and Calculated) for Eight-Membered Rings of 1, 2, 3, 4, 5, and 8 in BC Forms

Torsion angles/°											
Compounds		$\omega_1{}^{\mathrm{a})}$	${\omega_2}^{ m a)}$	$\omega_3{}^{\mathrm{a})}$	$\omega_4^{\mathrm{a})}$	$\omega_5{}^{ m a)}$	$\omega_6{}^{\mathrm{a})}$	$\omega_7{}^{ m a)}$	$\omega_8{}^{ m a)}$	$\Delta \mathrm{BC}(^{\circ})^{\mathrm{b})}$	
1	X-Ray	-57.4	-58.5	108.9	-52.8	53.2	-97.8	42.4	69.5	9.9	
	MM2	-57.9	-54.3	106.8	-52.2	50.4	-102.8	53.5	59.7	2.1	
2	X-Ray	-65.1	-47.1	106.5	-56.5	52.6	-102.0	53.0	62.6	4.2	
	MM2	-59.3	-52.3	106.1	-52.9	51.5	-103.0	52.6	60.6	1.5	
3	X-Ray	-48.7	-61.4	112.9	-64.3	65.6	-106.6	44.5	61.3	9.3	
	MM2	-52.5	-55.8	111.8	-63.6	61.3	-109.8	55.2	54.5	1.7	
$4^{\mathrm{c})}$	MM2	-65.7	-46.7	100.6	-69.2	70.6	-100.6	42.1	68.8	2.3	
5	MM2	-62.3	-45.0	104.3	-67.9	67.0	-110.3	52.0	58.7	4.4	
8 ^{d)}	X-Ray	-47.1	-66.5	110.0	-61.9	70.3	-100.3	29.0	71.1	19.9	
	MM2	-52.7	-57.4	109.1	-66.3	69.4	-104.9	42.4	61.4	7.8	

a) The positions of the torsion angles ω_{1-8} are shown below.

	1	2	3	4	5	8
C(10)- $C(11)$ - $C(1)$ - $C(2)$	ω_1	ω_1	ω_5	ω_3	ω_8	ω_5
C(11)-C(1)-C(2)-C(3)	ω_2	ω_2	ω_6	ω_4	ω_1	ω_6
C(1)-C(2)-C(3)-C(4)	ω_3	ω_3	ω_7	ω_5	ω_2	ω_7
C(2)-C(3)-C(4)-C(8)	ω_4	ω_4	ω_8	ω_6	ω_3	ω_8
C(3)-C(4)-C(8)-C(9)	ω_5	ω_5	ω_1	ω_7	ω_4	ω_1
C(4)-C(8)-C(9)-C(10)	ω_6	ω_6	ω_2	ω_8	ω_5	ω_2
C(8)-C(9)-C(10)-C(11)	ω_7	ω_7	ω_3	ω_1	ω_6	ω_3
C(9)- $C(10)$ - $C(11)$ - $C(1)$	ω_8	ω_8	ω_4	ω_2	ω_7	ω_4

$$\omega_1$$
 ω_2
 ω_3

b) Ref. 4, $\Delta BC = (|\omega_1 + \omega_8| + |\omega_2 + \omega_7| + |\omega_3 + \omega_6| + |\omega_4 + \omega_5|)/4$. c) BC-1,5 form. The others are BC-3,7 forms. d) Ref. 8.

C₅ fused ring compounds.

Experimental

The IR spectra were recorded using Horiba FT-200 spectrometer. The $^1\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra were recorded on a Varian XL-400 (400-MHz) spectrometer in CDCl₃ with TMS as the internal standard. The mass spectra were obtained with JOEL JMS-DX300 mass spectrometer.

cis- cisoid- cis- Tricyclo [9.4.0.0^{4,8}] pentadecane-2, 9-dione (1). A solution of cis-decalin-1,3-dione¹⁵⁾ (1.4 g, 8.43 mmol) in methanol (100 ml) and cyclopentene (30 ml, 0.44 mol) was irradiated for 20 h in a Pyrex tube with 100 W high-pressure mercury lamp at 5 °C in a nitrogen atmosphere. After the irradiation, the solvent was removed under reduced pressure. The remaining residue was subjected to column chromatography on silica gel (hexane-ether, 3:1). From the second fraction 0.36 g (1.54 mmol, 18.3%) of 1 was obtained. In the other fractions two or three compounds were present and their molecular structures have still not been elucidated.

1: Mp 122—124 °C; IR (Nujol) 1697 and 1684 cm $^{-1}$ (C=O); $^{13}{\rm C~NMR}$ (CDCl₃) $\delta{=}21.0,~21.7,~22.5,~24.7,~28.0,$

30.4, 32.7, 41.0, and 45.9 (CH₂), 31.9, 42.4, 51.8, and 54.6 (CH), 212.4 and 213.6 (C=O); MS, Found: m/z 234.1611. Calcd for $C_{15}H_{22}O_2$: M, 234.1620.

trans-transoid-cis- and trans-cisoid-cis-Tricyclo-[9.4.0.0^{4,8}]pentadecane-2,9-dione (2 and 3). A solution of trans-decalin-1,3-dione¹⁵⁾ (2.0 g, 12.0 mmol) in methanol (110 ml) and cyclopentene (35 ml, 0.51 mol) was irradiated for 20 h in a similar manner as above. By the chromatography of crude product, 2 (0.52 g, 2.2 mmol, 18.4%) was obtained from the first fruction, and the second fruction gave 3 (0.53 g, 2.4 mmol, 19.9%). From the further fractions other two isomers (mp, 162—164 °C and 100—102 °C) were obtained and their molecular structures are under investigation.

2: Mp 104—105 °C; IR (Nujol) 1693 cm⁻¹ (C=O); 13 C NMR (CDCl₃) δ =23.0, 24.7, 25.9, 26.5, 28.2, 32.3, 34.5, 44.4, and 49.3 (CH₂), 39.0, 42.2, 54.7, and 58.2 (CH), 213.8 and 215.0 (C=O); MS, Found: m/z 234.1629. Calcd for $C_{15}H_{22}O_2$: M, 234.1620.

3: Mp 163—164 °C; IR (Nujol) 1701, and 1689 cm⁻¹ (C=O); ¹³C NMR (CDCl₃) δ =22.3, 23.6, 24.9, 25.6, 28.9, 32.4, 34.4, 44.7, and 50.5 (CH₂), 38.1, 40.0, 56.0, and 57.5

(CH), 212.9 and 213.9 (C=O); MS, Found: m/z 234.1617. Calcd for $C_{15}H_{22}O_2$: M, 234.1620.

Isomerization of 2 and 3 to 4 and 5. A solution of 2 (0.20 g, 0.85 mmol) in 2% KOH–methanol (5 ml) was left to stand at room temperature for 5 d. The reaction mixture was extracted with ether. The usual work-up of the extracts gave a crystalline residue, 4 (0.16 g, 0.68 mmol, 80%), which was recrystallized from ether–hexane. Similarly 3 (0.20 g) was isomerized to 5 (0.17 g, 85%).

- 4: Mp 124—125 °C; IR (Nujol) 1701 and 1697 cm⁻¹ (C=O); ¹³C NMR (CDCl₃) δ =23.1, 24.8, 25.8, 28.0, 29.9, 33.9, 35.1, 46.9, and 50.5 (CH₂), 42.0, 46.1, 57.7, and 59.2 (CH), 212.3 and 218.5 (C=O); MS, Found: m/z 234.1633. Calcd for C₁₅H₂₂O₂: M, 234.1620.
- 5: Mp 147—149 °C; IR (Nujol) 1697 cm⁻¹ (C=O); 13 C NMR (CDCl₃) δ =22.6, 24.8, 25.8, 28.8, 29.1, 33.4, 33.6, 44.8, and 50.2 (CH₂), 36.7, 43.8, 57.1, and 57.6 (CH), 213.4 (C2 and C9, C=O); MS, Found: m/z 234.1625. Calcd for $C_{15}H_{22}O_2$: M, 234.1620.

References

- F. A. L. Anet and J. Krane, Tetrahedron Lett., 1973, 5029; F. A. L. Anet and V. J. Busus, J. Am. Chem. Soc., 95, 4424 (1973); S. Merboom, R. C. Howitt, and Z. Luz, J. Chem. Phys., 66, 4041 (1977); O. V. Dorofeeva, V. S. Mastryukov, N. L. Allinger, and A. Almenningen, J. Phys. Chem., 1985, 252.
- 2) M. Dobler, J. D. Dunitz, and A. Mugunoli, Helv. Chim. Acta, 49, 2492 (1966); H. B. Bürgi and J. D. Dunitz, Helv. Chim. Acta, 51, 1514 (1968); J. E. Anderson, E. S. Glazer, D. L. Griffith, R. Knorr, and J. D. Roberts, J. Am. Chem. Soc., 91, 1386 (1969); J. V. Egmond and C. Romers, Tetrahedron, 25, 2693 (1969); R. Srinivasan and T. Srikishnan, Tetrahedron, 27, 1009 (1971); M. St. Jacques and R. Prud'homme, J. Am. Chem. Soc., 94, 6479 (1972); F. A. L. Anet, Top. Curr. Chem., 45, 169 (1974); T. C. Rounds and H. L. Strauss, J. Chem. Phys., 69, 268 (1978); P. Groth, Acta Chem. Scand., Ser. A, A35, 117 (1981); V. V. Kloclkov, P. P. Chernov, A. M. Polozov, V. L. Antonovskii, and A. V. Aganov, Zh. Org. Khim., 24, 2280 (1988).

- 3) F. A. L. Anet, M. St. Jacques, P. M. Henrichs, A. K. Cheng, J. Krane, and L. Wrong, *Tetrahedron*, **30**, 1629 (1974).
- 4) R. W. Miller and A. T. McPhail, J. Chem. Soc., Perkin Trans. 2, 1979, 1527.
- 5) J. B. Hendrickson, J. Am Chem. Soc., 86, 4854 (1964); J. Am. Chem. Soc., 89, 7036 (1967); M. Bixon and S. Lifson, Tetrahedron, 23, 769 (1967); N. L. Allinger, J. A. Hirsch, M. A. Miller, I. J. Timinski, and F. A. Van-Catledge, J. Am. Chem. Soc., 90, 1199 (1968); E. M. Engler, J. D. Andose, and P. von R. Schleyer, J. Am. Chem. Soc., 95, 8005 (1973); N. A. Allinger, M. T. Tribble, and M. A. Miller, Tetrahedron, 28, 1173 (1972); P. M. Ivanov and E. Osawa, J. Comput. Chem., 5, 307 (1984).
- 6) M. Umehara, H. Takayanagi, H. Ogura, and S. Hishida, *Bull. Chem. Soc. Jpn.*, **51**, 3277 (1978); S. Okumoto, S. Ohba, Y. Saito, T. Ishii, M. Umehara, and S. Hishida, *Acta Crystallogr.*, *Sect. C*, **C43**, 1584 (1987).
- 7) M. Umehara, S. Hishida, S. Okumoto, S. Ohba, M. Ito, and Y. Saito, Bull. Chem. Soc. Jpn., 60, 4474 (1987).
- 8) M. Umehara, S. Hishida, M. Okuda, S. Ohba, M. Ito, and Y. Saito, *Bull. Chem. Soc. Jpn.*, **63**, 2002 (1990).
- 9) S. Okumoto, S. Ohba, Y. Saito, M. Umehara, and S. Hishida, *Acta Crystallogry.*, Sect. C, C44, 1275 (1988).
- 10) N. L. Allinger, J. Am. Chem. Soc., 99, 8127 (1977).
- 11) C. S. Swindell, T. F. Isaacs, and K. J. Kanes, *Tetrahedron Lett.*, **26**, 289 (1985); E. Osawa, H. Goto, T. Oishi, Y. Ohtsuka, and T. Chuman, *Pure Appl. Chem.*, **61**, 597 (1989); L. A. Paquette, S. W. Elmore, K. D. Combrink, and E. R. Hickey, *Helv. Chim. Acta*, **75**, 1755 (1992).
- 12) J. G. Garcia, F. R. Fronczek, and M. L. McLaughlin, *Tetrahedron Lett.*, **32**, 3289 (1991).
- 13) T. Kawata, S. Ohba, M. Umehara, and H. Honnami, Acta Crystallogr., Sect. C, C49, in press.
- 14) We believe that we have carefully considered all reasonable low energy conformers but one can never be absolutely sure that the global minima have been found.
- 15) C. Tamm and R. Albrecht, *Helv. Chim. Acta*, **43**, 768 (1960); C-K. Chuang and Y-L. Tien, *Chem. Ber.*, **69**, 25 (1936); G. A. R. Kong and M. Qudrat-I-Khuda, *J. Chem. Soc.*, **1926**, 3071.